Finite element modeling of impulsive excitation and shear wave propagation in an incompressible, transversely isotropic medium
نویسندگان
چکیده
منابع مشابه
Analysis of Wave Motion in a Micropolar Transversely Isotropic Medium
The present investigation deals with the propagation of waves in a micropolar transversely isotropic layer. Secular equations for symmetric and skew-symmetric modes of wave propagation in completely separate terms are derived. The amplitudes of displacements and microrotation were also obtained. Finally, the numerical solution was carried out for aluminium epoxy material and the dispersion curv...
متن کاملRayleigh Surface Wave Propagation in Transversely Isotropic Medium with Three-Phase-Lag Model
The present paper is dealing with the propagation of Rayleigh surface waves in a homogeneous transversely isotropic medium .This thermo-dynamical analysis is carried out in the context of three-phase-lags thermoelasticity model. Three phase lag model is very much useful in the problems of nuclear boiling, exothermic catalytic reactions, phonon-electron interactions, phonon scattering etc. The n...
متن کاملInfluence of Heterogeneity on Rayleigh Wave Propagation in an Incompressible Medium Bonded Between Two Half-Spaces
The present investigation deals with the propagation of Rayleigh wave in an incompressible medium bonded between two half-spaces. Variation in elastic parameters of the layer is taken linear form. The solution for layer and half-space are obtained analytically. Frequency equation for Rayleigh waves has been obtained. It is observed that the heterogeneity and width of the incompressible medium h...
متن کاملA Potential Method for Body and Surface Wave Propagation in Transversely Isotropic Half- and Full-Spaces
The problem of propagation of plane wave including body and surface waves propagating in a transversely isotropic half-space with a depth-wise axis of material symmetry is investigated in details. Using the advantage of representation of displacement fields in terms of two complete scalar potential functions, the coupled equations of motion are uncoupled and reduced to two independent equations...
متن کاملWave propagation in a transversely isotropic microstretch elastic solid
Background: The theory of microstretch elastic bodies was first developed by Eringen (1971, 1990, 1999, 2004). This theory was developed by extending the theory of micropolar elastcity. Each material point in this theory has three deformable directors. Methods: The governing equations of a transversely isotropic microstretch material are specialized in x-z plane. Plane wave solutions of these g...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Biomechanics
سال: 2013
ISSN: 0021-9290
DOI: 10.1016/j.jbiomech.2013.09.008